
UNITED STATES GEOLOGICAL SURVEY

UNDELETE

A Program to Recover
Deleted RSX-11 Disk Files

Program Logic Manual

Lawrence M. Baker

Open-File Report 86-418

This report is preliminary and has not been reviewed for conformity with
U. S. Geological Survey editorial standards and stratigraphic nomencla­
ture. Any use of trade names is for descriptive purposes only and does
not imply endorsement by the USGS.

DEC, PDP, and RSX are trademarks of Digital Equipment Corporation.

Although this program has been tested by the Geological Survey, United
States Department of the Interior, no warranty, expressed or implied, is
made by the Geological Survey as to the accuracy and functioning of the
program and related program material nor shall the fact of distribution
constitute any such warranty, and no responsibility is assumed by the
Geological Survey in connection therewith.

1986

Abstract

Undelete is a non-privileged utility program for the in-place
restoration of accidentally deleted disk files for the DEC
PDP-11 RSX-family operating systems. Files are restored based
on a user-specifed search pattern, which provides a flexible
means of wild card matching by character or by field within a
file specification. A dry run option is available to identify
candidates for restoration without actually modifying the disk
file structure.

1.0 Introduction

This document is a companion to the Undelete User's Manual and Installa­
tion Guide, which should be read first. It is assumed that the reader
is familiar with the operation of Undelete and is generally familiar
with the DEC PDP-11 RSX-family operating systems and the Files-11
on-disk structure maintained by the Files-11 Ancillary Control Proces­
sor, F11ACP.

2.0 Method of Operation

The on-disk; file structure used by the RSX-family of operating systems
stores auxiliary information about the disk contents (i.e., ownership,
protection, size , etc.) in a special file called the index file. The
index file contains one entry for each file stored on the disk, called a
primary file header, or more simply, a file header. Each file header
occupies an entire disk block (256 words), and has fields for header in­
formation (e.g., ownership, protection, and attributes), identification
information (e.g., name, creation date, and revision date), and mapping
information (e.g., retrieval pointers that specify where on the disk the
pieces of the file are located) . If the map area is insufficient to
store all the retrieval pointers, additional extension file headers are
allocated and chained together as needed. Even though it is a special
file, the index file may be opened for read or write access like any
other file, except that record I/O operations are undefined and all I/O
must be performed directly using block I/O by Virtual Block Number
(VBN) .

Undelete uses only primary file headers to locate a possible candidate
for restoration. Extension file headers are located using the informa­
tion contained in the file header map area. Since the file system only
modifies the map area of extension file headers, never the header or
identification areas, this is the only safe method of correctly locating
extension file headers that belong with the primary file header. It
also avoids the accidental restoration of an extension file header that
happens to match the search criteria when there is either no correspond­
ing primary file header, a missing antecedent extension file header, or
stale information in the header or identification areas as a result of a
change to the primary file header that was not propagated to the exten­
sion file header.

Page 1

When a file is deleted, the file system may or may not be able to carry
out the request immediately (depending on the number of file accesses
currently in progress) . To keep it's bookeeping straight, the file sys­
tem marks the file for deletion (in the system characteristics byte of
the file header, H.SCHA) , which prevents any further access to the file,
and actually performs the delete operation when the last access ter­
minates. The file system destroys very little in the process of delet­
ing a file:

1. The disk blocks used by the file are marked "available" in the
volume storage bit map, but are left undisturbed on the disk;

2. The primary file header and any extension file headers are
marked "available" in the index file bit map;

3. The file header fields for the file number (H.FNUM) and the
checksum (H.CKSM) are cleared; the other fields in the primary
and extension file headers are left undisturbed; and

4. If the file was accessed via a directory (UFD) entry, the
directory entry is removed.

Restoration of files whose contents have otherwise not been altered can
be accomplished by simply reversing these steps:

1. The :,file number is implied by the file header's position in the
index file;

2. The file header checksum is re-calculated once the file number
is restored;

3. The index file bit map is modified to mark the primary and ex­
tension file headers "in-use" again;

4. The volume storage bit map is modified to mark as "in-use"
again the disk blocks allocated to the file (whose addresses
are mapped by the retrieval pointers in the primary and exten­
sion file headers); and

5. A directory entry is created for the file so that it may be
easily accessed (not necessarily in the original UFD).

Undelete performs the first three steps of the restoration operation and
relies on the standard RSX VFY utility to perform the last two steps.
(VFY marks the disk blocks as "in-use" using the update option, and
creates directory entries for them in UFD [1/3] using the lost file scan
option.) VFY also helps reconcile any problems created when some of the
disk blocks that were contained in the accidentally deleted files have
since been re-used in other files (called "multiply allocated disk
blocks" by VFY) .

A detailed description of Undelete's operation follows, organized by
Fortran subprogram. See the appendices for listings of the Fortran
source module, include files, and command file.

Page 2

3.0 Program UNDELE

1. The user is queried for either the dry run option or actual
file recovery. The dry run option causes the logical variable
"enable" to be set .FALSE., which is then used to conditional-
ize calls to PUTBLK and PUTCBK.

2. The user is prompted for the disk name. The form of the
response is typically the standard RSX device name format
ddnn:, where dd is the device mnemonic and nn is the optional
unit number. The only syntax checking performed by Undelete is
to make sure the response is terminated by a colon.

3. The disk device name supplied is concatenated with the name of
the index file, [0, 0] INDEXF.SYS, to form the filename used in
the Fortran OPEN statement, which validates the disk name in
the process of performing the open. The BUFFERCOUNT=-1 option
is used in the OPEN statement to disable record level access to
the index file, since all I/O must be performed using QIOs to
the operating system directly. If this is not a dry run and
the index file cannot be opened for write access, a message is
printed and an attempt is made to continue as a dry run. If
the index file cannot be opened for read-only access, a message
is printed and the user is prompted for the disk name again.

4. The;,volume home block (VBN 2) is read. If an error occurs, Un­
delete is terminated with the error status. Otherwise, the
size of the index file bit map (H.IBSZ) and the maximum number
of files (H.FMAX) is printed on the user's terminal.

5. The search pattern to be used to match with available file
headers is constructed (see Function MAKPAT).

6. For each possible file header (1 through H.FMAX) :

1. The header is skipped if it is not marked available (see
Function HDRFRE).

2. The file header is read. If an error occurs, a check is
made to determine if an end-of-file was encountered. If
so, Undelete is terminated normally. Otherwise, a message
is printed and the header is skipped.

3. The header is skipped if it has never been used before
(i.e., the creation date (I .CRDT, I.CRTI) and modification
date (I.RVDT, I.RVTI) fields are zero).

4. The header is skipped if it is not a primary file header,
i.e., the extension segment number (M.ESQN) is non-zero.
(Extension file headers are dealt with separately in
UNDHDR.)

5. The header is skipped if it does not match the search pat­
tern (see Function MATCH).

Page 3

6. A message is printed and the header is skipped if it is
corrupted (the first word (H.IDOF, H.MPOF) does not contain
the value '027027'O (a fixed constant value for all
Files-11 structure level 1 volumes) or the file number
(H.FNUM) or checksum (H.CKSM) words are not zeroed out) .

7. Recovery is attempted for the file header (see Function
UNDHDR) .

7. The index file is closed.

8. A message is printed with the total number of files that were
recovered and instructions for running the VFY utility, or just
the number of files that will be recovered, if it was a dry
run.

9. Undelete is terminated by calling EXIT with the error status.

4.0 Function UNDHDR

UNDHDR performs the undelete operation for primary file headers and any
surviving extension file headers.

1. The: file number in the header (H.FNUM) is restored (it is the
same as the header number) .

2. The marked for delete characteristic (SC.MDL) in the system
characteristics byte (H.SCHA) is reset.

3. If this is not a dry run, the file header is re-written with a
new checksum. If an error occurs, a message is printed and the
error is returned to the caller.

4. The header is marked "in-use" in the index file bit map (HDRFRE
told us where) , and, if this is not a dry run, the index file
bit map is re-written. If an error occurs, a message is
printed and the error is returned to the caller.

5. The total number of files recovered is incremented.

6. If the header has extension file headers:

1. The next extension file header is located.

2. If the extension file header is corrupt or has since been
reused, a message is printed and the previous header is
modified to truncate the extension header chain (M.EFNU=0,
M.EFSQ=0) . (Unfortunately this makes the rest of the file
unrecoverable.)

3. The extension file header is restored, as above, and, if
this is not a dry run, the header and index file bit maps

Page 4

are re-written. If an error occurs, a message is printed
and the extension header chain is truncated.

5.0 Function MAKPAT

MAKPAT constructs the search pattern for MATCH from the user's response.

1. The user is prompted for the search pattern
([group,member]name.type;version). If an end-of-file is read,
an error is returned to the caller.

2. The final search pattern is initialized with the "?" wild card
character.

3. The user's response is converted to upper case.

4. If the group field was specified, and at least one non-wilcard
was typed, then the preloaded "?"s are changed to "0"s, and the
group number is right justified in the search pattern.

5. If the member field was specified, and at least one non-wilcard
was typed, then the preloaded "?"s are changed to "0"s, and the
member 'number is right justified in the search pattern.

.
6. If the name field was specified, it is copied into the search

pattern until a period or a semicolon is found.

7. If the type field was specified, it is copied into the search
pattern until a semicolon is found.

8. If the version number field was specified, and at least one
non-wilcard was typed, then the preloaded "?"s are changed to
"0"s, and the version number is right justified in the search
pattern.

9. Any "*"s are converted to "?"s and the characters in the final
search pattern are validated (all numeric fields must be octal
or "?", and all alphanumeric fields must be RAD50 or "?") . If
there are any syntax errors or illegal characters, a message is
printed and the user is prompted for the search pattern again.

10. The final search pattern is printed on the user' s terminal and
success is returned to the caller.

Page 5

6.0 Function MATCH

MATCH determines if a file header qualifies for recovery by comparing
the file identification fields with the search pattern specified by the
user. The format of the 24 character search pattern is:

"gggmmmffffffffftttwww"

g (1- 3) = Owner's group number (octal)
m (4- 6) = Owner's member number (octal)
f (7-15) = File name
t (16-18) = File type
v (19-24) = File version number (octal)

"?" in any position matches any character in the actual file specifica­
tion. All numeric fields not wild carded must have leading zeros in the
search pattern. The file name and file type fields must contain legal
RAD50 characters (upper case letters and digits) .

1. Assume the match will fail.

2. The UIC group (H.PROG) and member (H.PROJ) numbers are con­
verted to octal. I f the pattern match to the group number
fails, return. If the pattern match to the member number
fails, return.

3. The^ file name (I.FNAM) is converted from RAD50 to ASCII. If
the pattern match to the file name fails, return.

4. The file type (I.FTYP) is converted from RAD50 to ASCII. If
the pattern match to the file type fails, return.

5. The version number (I.FVER) is converted to octal. If the pat­
tern match to the version number fails, return.

6. The pattern match is successful. A PIP-style directory line is
printed on the user's terminal.

NOTE

The user may want to insert a query capability here
as an option, and return no match if the user de­
clines to restore this file (e.g., the type of prompt
used by PIP and SRD for selective file deletions) .

Page 6

7.0 Function HDRFRE

HDRFRE returns the availability status of a file header (.TRUE. =
header is marked "available-for-use") by examining the corresponding
"in-use" flag in the index file bit map. Header number 1 corresponds to
bit number 0 in the bit map; there are 4096 bits to a disk block (256
words), starting at VBN 3.

To optimize program performance, a write-through cache is maintained by
retaining the validity of the VBN of the last bit map block read
throughout the program. No read is performed if the VBN needed is the
same as the last one read. (It's contents may have changed due to set­
ting "in-use" flags, but the memory copy is always the same as the disk
block, since a write is performed whenever an "in-use" flag is set.)

1. The desired bit map block number is calculated from the file
header number.

2. If the desired bit map block is not the one in memory, the new
block is read. If an error occurs, the bit map block number is
set to -1. Otherwise, the bit map block number is updated.

3. If the bit map block number is the same as the desired bit map
block:

1. The" index of the word containing the header's "in-use" flag
. .^and the mask value for testing/setting the state of the

"in-use" flag is calculated.

2. The complement of the "in-use" flag is returned to the
caller.

4. Otherwise "header-in-use" is returned to the caller.

8.0 Functions GETBLK, PUTBLK, and PUTCBK

GETBLK reads a virtual block from the index file. PUTBLK writes a vir­
tual block to the index file. PUTCBK computes the checksum of words 1
through 255 into word 256, then writes a virtual block to the index
file.

1. If entry was at GETBLK, the I/O function code is set to IO.RVB.

2. If entry was at PUTCBK, the checksum of words 1 through 255 is
calculated and placed into word 256 of the buffer. Execution
continues at the PUTBLK entry.

3. If entry was at PUTBLK, the I/O function code is set to IO.WVB.

4. The operating system WTQIO subroutine is called with the
appropriate I/O function code.

Page 7

5. The value of the directive status word, if the operating system
rejected the request, or the I/O status byte, if the request
was accepted, is returned to the caller.

9.0 Subroutine UPCASE

UPCASE converts a string to upper case characters.

For each character in the string:

1. The character is converted to its integer equivalent.

2. Comparison is made with the integer equivalents for lower case
a and z.

3. If it's lower case, the character is replaced with the cor­
responding single character substring from the upper case al­
phabet in ALPHA.

10.0 Acknowledgements

I would like to 'thank Jon Berger for the circumstances that necessitated
writing Undelete, Richard Sipura for inspiring me to update it and
finally write it up, and to my reviewers, Tim MacDonald and Gary Max­
well.

11.0 Re ferences

1. IAS/RSX-11 I/O Operations Reference Manual (Order No.
AA-M176A-TC) , Appendix A, "File Descriptor Block", Appendix E,
"Index File Format", and Appendix F, "File Header Block
Format".

2. RSX-11M/M-PLUS Utilities Manual (Order No. AA-L681A-TC) ,
Chapter 9, "File Structure Verification Utility (VFY)".

3. Baker, Lawrence M., 1986, Undelete: A Program to Recover
Deleted RSX-11 Disk Files, User's Manual and Installation
Guide: U. S. Geological Survey Open-File Report 86-375. 8 p.

Page 8

APPENDIX A

Fortran Source Module

A.I Fortran Source Module (Undelete.ftn)

Program UNDELE
C
C Undelete - Restore deleted files from an RSX-11 disk.
C
C This is not a privileged program! It should only be run by someone
C knowledgeable about the system and Files-11 disk structures, and
C should normally NOT be INStalled for general use. There must be no
C other activity on the disk and it must be MOUnted/UNL. Naturally,
C this should only be run from a privileged terminal. (Fortran-77 is
C required to perform 32-bit integer arithmetic.)
C
C Search patterns for recovery are specified in a form similar to the
C SRD /SElectentry option: ? and * are single character wild cards
C and a stem search is automatically performed. Any unspecified fields
C default to wild cards. Note that the special version numbers, 0 and
C -1, are NOT supported.
C
C For example:
C
C To recover all the .FTN files owned by [100,2], specify the
C search pattern [100,2]*.FTN.
C
C To recover all files beginning with BP2 owned by any account,
C you may simply specify BP2.
C
C See the comments in the code for possible modifications ('NOTE') .
C There should not be any required to run on an RSX-11M V3.1 system or
C on an RSX-llM-Plus V2.1 system (and possibly on a VAX in compatibili-
C ty mode).
C
C Warning -- UNDELETE has been used exactly once by the author in a
C real live situation (it worked) . It was written for this emergency
C and has been tested successfully on floppy disks and virtual disks,
C and has successfully recovered files at other installations. It is
C recommended that you use any other source of a backup copy of a file
C before attempting to UNDELETE it, since it is always risky to mess
C with the volume structure. However, when it has been actually

Page A-l

Fortran Source Module

applied in real disasters, UNDELETE has always worked, and you can
have every confidence in its ability to correctly manipulate the
index file structure.

To compile:

>F77 Undelete,Undelete/-sp=Undelete

To task build:

>TKB Undelete,Undelete/-sp=Undelete

Undelete uses QIOs to manipulate the index file and normal Fortran
Read and Write statements for terminal I/O, so your Fortran-77 OTS
can be either the FCS or the RMS flavor.

References:

1. IAS/RSX-11 I/O Operations Reference Manual (Order No.
AA-M176A-TC) , Appendix A, "File Descriptor Block", Appendix E,
"Index File Format", and Appendix F, "File Header Block Format".

2. RSX-11M/M-PLUS Utilities Manual (Order No. AA-L681A-TC) , Chapter
9, "File Structure Verification Utility (VFY)".

Larry Baker
U. S. Geological* Survey
345 Middlefield Road M/S 977
Menlo Park, CA 94025
(415) 323-8111 X2688

Although this program has been tested by the Geological Survey,
United States Department of the Interior, no warranty, expressed or
implied, is made by the Geological Survey as to the accuracy and
functioning of the program and related program material nor shall
the fact of distribution constitute any such warranty, and no respon­
sibility is assumed by the Geological Survey in connection therewith.

Modification history:

21-Jan-80 L. M. Baker
22-May-86 L. M. Baker
26-May-86 L. M. Baker

28-May-86 L. M. Baker

15-Jun-86 L. M. Baker

Implicit Integer (A-Z)

Include
Include
Include
Include

'IdxDef/List'
'HomDef/List'
'HdrDef/List'
'UndCom/List'

Original version (RSX-11M V3.1)
Removed references routines in UserLib.
Use Fortran-77 character variables and

Parameter statements for constants.
Add special case code to handle extension

file headers.
Split restoration of primary and extension

file headers into a separate subroutine

! Define index file offsets
! Define home block offsets
! Define file header block offsets

Page A-2

Fortran Source Module

Integer*4 jhfmax, jhdrno, jhvbn
Integer*2 hdrbuf(256) / hombuf(256)
Integer * 2 ihdrno
Logical HDRFRE, MATCH
Character reply* 7 2

C
C. . . Don't need both at the same time

Equivalence (hombuf, mapbuf)
Equivalence (jhdrno, ihdrno)

C
C. . . Prompt user for dry run option and disk name
C

1000 Write (TTOUT,505)
505 Format (/'$Do you want a dry run (no disk modifications',

1 ' attempted) [Y/N / CR=Y]? ')
Read (TTIN / 502 / End=9900) nchars, reply

502 Format (Q, A)
If (nchars .le. 0) Then

reply(1:1) = 'Y'
End If
enable = ((reply(lrl) .eq. 'n') .or. (reply(l:l) .eq. 'N'))
Write (TTOUT,501)

501 Format (/'$Enter disk name (ddnn:) ')
Read (TTIN / 502 / End=9900) nchars, reply

C... Do a little syntax checking
If (nchars ;gt. 0) Then

If (reply (nchars:nchars) .ne. ':') Then
Write (110111,503) reply (1: nchars)

503 Format (/' ' , A, ' must be of the form ddnn:, re-enter.')
Goto 1000

End If
Else

reply = 'SY:'
nchars = 3

End If
C
C... Make sure this is really a disk
C
1100 reply(nchars+1:) = INDEXF

If (enable) Then
C... BUFFERCOUNT=-1 disables all record level access to a file --
C... all I/O to the index file is done using QIOs to F11ACP directly

Open (Unit=IDXLUN,File=reply,Status='Old',Buffer Count=-l,
1 Err=1190)

Goto 1200
1190 Write (110111,504) reply (l:nchars+LEN(INDEXF))
504 Format (/' Unable to open ', A, ' for write access;',

1 ' continuing as a dry run.')
enable = .FALSE.

1200 Continue
End If
If (.not. enable) Then

Open (Unit=IDXLUN,File=reply,Status='Old',Buffer Count=-l,
1 Read Only,Err=l290)

Goto 1300

Page A-3

Fortran Source Module

1290 Write (TTOuT,507) reply (l:nchars+LEN (INDEXF))
507 Format (/' Unable to open ', A, '.')

Goto 1000
1300 Continue

End If
C
C. . . Read home block
C

jcount = 0
If (GETBLK (IDXLUN,HOMVBN, hombuf, ierr) .ne. ISSUC) Then

Write (TTOUT,506) ierr, ierr
506 Format (/' Error reading home block: ', 06, ' (', 16, '.) ')

Goto 9000
End If

C
C... Get offset to start of file headers and maximum number of files
C... Note: H.FMAX is a 16-bit unsigned integer
C
1400 ihibsz = hombuf (HIBSZ)

jhdrno = 0
ihdrno = hombuf (HFMAX)
jhfmax = jhdrno
Write (TTOUT,509) ihibsz, ihibsz, jhfmax, jhfmax

509 Format (/' Index file bit map size (H.IBSZ): ',06,
1 ' (', 15, ' .) V
2 --* Maximum number of files (H.FMAX) : ',06,
3 ;; ' (', 15, '.)')

C
C. . . Make data pattern to match for header search
C

If (MAKPAT(ierr) .ne. ISSUC) Then
Goto 9000

End If
C
C. . . There will be a maximum of H.FMAX headers starting at VBN
C... MAPVBN+H.IBSZ
C

jhvbn = ihibsz + MAPVBN
Do 3000 jhdrno = 1,jhfmax

C
C... Is this file header marked available?
C

If (.not. HDRFRE(jhdrno)) Then
Goto 3000

End If
C
C... Yes, see if it qualifies for restoration
C

If (GETBLK (IDXLUN, jhvbn,hdrbuf, ierr) .ne. ISSUC) Then
C. . . The index file is probably shorter than H.FMAX

If (ierr .eq. IEEOF) Then
ierr = ISSUC
Goto 9000

Else
Write (TTOUT,510) jhdrno, jhdrno, ierr, ierr

Page A-4

Fortran Source Module

C
C
C
C

C
C.
C.
C

510 Format (/' Error reading file header number ', 06,
1 ' (', 15, '.): ', 06, ' (', 16, '.).')

Goto 3000
End If

End If

If this header has never been used before, the creation date
and modification date fields are zeros

Do 2100 j = IRVDT,IRVDT+12
If (hdrbuf(j) .ne. 0) Then

Goto 2200
End If

2100 Continue
Goto 3000

2200 Continue

See if it looks like it might be saved ('027027'0 in
word 1 and zeroed out file number and checksum)

If ((hdrbuf(HIDOF) .ne. '027027'0) .or.
1 (hdrbuf (HFNUM) .ne. 0) .or.
2 (hdrbuf (HCKSM) .ne. 0)) Then

Goto 3000
End If

Extension file headers are dealt with separately in UNDHDR

If (hdrbuf(MESQN) .ne. 0) Then
Goto 3000

End If

Match search pattern?

If (.not. MATCH (jhdrno, hdrbuf)) Then
Goto 3000

End If

Perform recovery for this file header

junk = UNDHDR (jhdrno,jhvbn,ihdrno,hdrbuf,ierr)
C
3000 jhvbn = 1 + jhvbn

C
9000 Close (Unit=IDXLUN)

C
C... Print message if any files recovered
C

If (jcount .le. 0) Then
Write (TTOUT,516)

516 Format (/' No matching file headers found.'/)
Else

If (enable) Then
Write (TTOUT,515) jcount, reply (linchars) , reply(Irnchars)

515 Format (/' Undelete recovered ', 15, '. files.'//

C
C.
C

C
C
C

C
C.
C

Page A-5

Fortran Source Module

1 ' You must run the VFY utility to complete the 1 ,
2 ' recovery of the disk: 1 //
3 ' VFY>TI:,LB: = ', A, '/UP'/
4 ' VFY>TI:,LB: = ', A, '/LO'/)

Else
Write (TTOUT,517) jcount, 'will be'

517 Format (/' Undelete found ', 15, '. files for recovery.'/)
End If

End If
C
9900 Call EXIT (ierr)

C
End
Integer Function UNDHDR (jhdrno, jhvbn, ihdrno, hdrbuf, ierr)

C
C UNDHDR - Perform undelete operation for file.
C

Implicit Integer (A-Z)
C

Include 'IdxDef/NoList' ! Define index file offsets
Include 'HdrDef/NoList' ! Define file header block offsets
Include ' UndCom/NoList'

C
Integer*4 jhdrno, jhvbn
Integer*2 ihdrno, hdrbuf (256)
Integer*^- jpreno, jextno, jxvbn
I n teger * "2 i extno
Logical HDRFRE

C
Equivalence (jextno, iextno)

C
C... Assume successful operation
C

ierr = ISSUC
C
C... Set file number in file ID (16-bit unsigned integer)
C

hdrbuf (HFNUM) = ihdrno
C
C... Reset marked-for-delete characteristic
C

hdrbuf (HUCHA) = I AND (hdrbuf (HUCHA) , NOT (SCMDL))
C
C. . . Re-write header with checksum
C

If (enable) Then
If (PUTCBK(IDXLUN, jhvbn,hdrbuf, ierr) .ne. ISSUC) Then

C... Error rewriting file header to index file
Write (TTOUT,514) jhdrno, jhdrno, ierr, ierr

514 Format (' Error rewriting file header number ', O6, ' (',
1 15, '.) to index file: ', O6, ' (', 16, '.) ')

Goto 9000
End If

End If
C

Page A-6

Fortran Source Module

C. . . Set bit map in index file (HDRFRE told us where)
C

mapbuf (wordno) = I OR (mapbuf (wordno) , mask)
C

If (enable) Then
If (PUTBLK (IDXLUN,jmapno, mapbuf, ierr) .ne. ISSUC) Then

C. . . Error rewriting index file bit map
Write (TTOUT,513) jhdrno, jhdrno, ierr, ierr

513 Format (' Error rewriting index file bit map for header',
1 ' number ', O6, ' (', 15, '.): ', O6, ' (', 16,2 '.).')

Goto 9000
End If

End If
C
C. . . Count this one in the total
C

jcount = 1 + j count
C
C... Start of extension file header processing
C

jpreno = jhdrno
C
C... Look for the next extension file header
C
2000 If ((hdrbu.f (MEFNU) .ne. 0) .and.

1 (hdrbuf (MEFSQ) .ne. 0)) Then
C
C. . . Is this file header marked available?
C

jextno = 0
iextno = hdrbuf "(MEFNU)
jxvbn = jextno + MAPVBN
If (.not. HDRFRE(jextno)) Then

Goto 4000
End If

C
C... Yes, see if it qualifies for restoration
C

If (GETBLK(IDXLUN,jxvbn,hdrbuf,ierr) .ne. ISSUC) Then
Goto 4000

End If
C
C... See if it looks like it might be saved ('027027'0
C. . . in word 1 and zeroed out file number and checksum)
C

If ((hdrbuf(HIDOF) .ne. '027027'O) .or.
1 (hdrbuf (HFNUM) .ne. 0) .or.
2 (hdrbuf(HCKSM) .ne. 0)) Then

Goto 4000
End If

C
C... Perform recovery for this file header
C
C... Set file number in file ID (16-bit unsigned integer)

Page A-7

Fortran Source Module

hdrbuf (HFNUM) = iextno
C
C. . . Reset marked-for-delete characteristic
C

hdrbuf (HUCHA) = IAND (hdrbuf (HUCHA) , NOT (SCMDL))
C
C. . . Re-write header with checksum
C

If (enable) Then
If (PUTCBK(IDXLUN,jxvbn,hdrbuf,ierr) .ne. ISSUC) Then

C... Error rewriting file header to index file
Write (TTOUT, 514) jextno, jextno, ierr, ierr
Goto 4000

End If
End If

C
C. . . Set bit map in index file (HDRFRE told us where)
C

mapbuf (wordno) = I OR (mapbuf (wordno) , mask)
If (enable) Then

If (PUTBLK(IDXLUN/ jmapno / mapbuf,ierr) .ne. ISSUC) Then
C... Error rewriting index file bit map

Write (TTOUT,513) jextno, jextno, ierr, ierr
Goto 4000

EncLlf-
End-If

C
C... Look for the next extension file header
C

jpreno = jextno
Goto 2000

C
C... Extension header got clobberred or other error encountered
C... processing extension header -- truncate extension header chain
C. . . at last good header (makes rest of file unrecoverable, sorry)
C
C... Restore previous file header
C
4000 Write (TrOUT,508) jextno, jextno, jhdrno, jhdrno,

1 jpreno, jpreno
508 Format (' Warning: Extension file header number ',06, ' (',

1 15, '.) for file header number ',06, ' (', 15,
2 ' .) is corrupted;'/
3 ' extension chain terminated at the previous file 1 ,
4 ' header number ',06, ' (', 15, '.).')

jextno = jpreno
jxvbn = jextno + MAPVBN
If (GETBLK(IDXLUN, jxvbn,hdrbuf, junk) .ne. ISSUC) Then

C. . . The index file is probably shorter than H.FMAX
If (junk .ne. IEEOF) Then

Write (TTOUT,510) jextno, jextno, junk, junk
510 Format (/' Error reading file header number ', 06,

1 ' (', 15, '.): ', 06, ' (', 16, '.).')
End If

Page A-8

Fortran Source Module

Goto 9000
End If
hdrbuf(MEFNU) = 0
hdrbuf(MEFSQ) = 0
If (enable) Then

If (PUTCBK(IDXLUN,jxvbn,hdrbuf,junk) .ne. ISSUC) Then
C... Error rewriting file header to index file

Write (TTOUT,514) jextno, jextno, junk, junk
End If

End If
C
C... End of extension file header processing
C

End If
C
9000 UNDHDR = ierr

C
Return
End
Integer Function MAKPAT (ierr)

C
C MAKPAT - Make search pattern from user response.
C

Implicit Integer (A-Z)
C

Include 'YUridCom/NoList' C :'

Integer nlegal(24)
Character reply*40, char, legalc*38

C
C. . . Number of legal characters, by index into patrn

Data nlegal/6*10,12*38,6*10/
C... Legal characters (1-10 = octal;l-38 = RAD50)

Data legalc/' *?0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
C

ierr = IEBAD
C
1000 Write (TTOUT,507)
507 Format (/'$Enter search pattern ([grp,mem]name.typ,-version',

1 ',CR=all) ')
Read (TTIN / 502,End=9000) nchars, reply

502 Format (Q, A)
C. . . Fill pattern with wild cards

patrn = PATRNO
If (nchars .gt. 0) Then

C... Convert to upper case characters
Call UPCASE (nchars,reply)

C... Fill in 6 character owning UIC
3 = 1
If (reply(j:j) .eq. '[') Then

j = j + 1
C... Find group number

If (j .gt. nchars) Then
Goto 9900

End If

Page A-9

Fortran Source Module

C. . .
C. . .

1100
C. . .
1200

C. . .

C. .
C. .

1300
C. . .
1400

C. . .
C. . .

i = INDEX (replyQ:), 1 , ')
If ((i .eq. 0) .or. (i .gt. 4)) Then

Goto 9900
End If
If (i .gt. 1) Then

Change preloaded ?'s to O's if at least one non-wilcard
is found
Do 1100 k = j,j+i-2

If ((reply(k:k) .ne. '*') .and.
(reply(k:k) .ne. '?')) Then

patrn(l:3) = '000'
Goto 1200

End If
Continue

Right justify group number to 03.3 format
patrn(5-i:3) = reply(j:j+i-2)

End If
j = j + i
Find member number
If (j .gt. nchars) Then

Goto 9900
End If
i = INDEX (reply (j :),']')
If ((i .eq. 0) .or. (i

Goto 9900
End-If
If (i .gt. 1) Then

Change preloaded ?'s to O's if at least one non-wilcard
is found
Do 1300 k = j,j+i-2

If ((reply(k:k) .ne. '*') .and.
(reply(k:k) .ne. '?')) Then

patrn(4:6) = '000'
Goto 1400

End If
Continue

Right justify member number to 03.3 format
patrn(8-i:6) = reply (j :j+i-2)

End If
j = j + i

End If

,gt. 4)) Then

Fill pattern with 9 character
semicolon is found
If (j .gt. nchars) Then

Goto 2000
End If
i = INDEX (reply (j :) , ' . ')
If (i .eq. 0) Then

i = INDEX (reply(j:) / 1 ; 1)
End If
If (i .eq. 0) Then

i = nchars - j + 2
End If
If (i .gt. 10) Then

Goto 9900

'name" part until a period or

Page A-10

c
c

c
c

1500
C. . .
1600

C
C. . .
C
2000

C. . .

C. . .

508

2100

Fortran Source Module

End If
patrn (7:7+1-2) = reply(j:j+i-2)
j = j + i
Fill pattern with 3 character "type" part until a semicolon is
found
If (j .gt. nchars) Then

Goto 2000
End If
i = INDEX (reply (j :),';')
If (i .eq. 0) Then

i = nchars - j + 2
End If
If (i .gt. 4) Then

Goto 9900
End If
patrn(16:16+1-2) = reply(j:j+i-2)
j = j + i
Fill pattern with 6 character "version" part
If (j .gt. nchars) Then

Goto 2000
End If
i = nchars - j + 2
If (i .gt. 7) Then

Goto 9900
End If
If (i -.-gt. 1) Then

^Change preloaded ?'s to O's if at least one non-wilcard is
found
Do 1500 k = j,j+i-2

If ((reply(k:k) .ne. '*') .and.
(reply (k:k) .ne. '?')) Then

patrn(19:24) = '000000'
Goto 1600

End If
Continue

Right justify version number to 06.6 format
patrn(26-i:24) = reply (j : j+i-2)

End If

Convert * to ? and validate characters (must be RAD50 or ?)

Do 2100 j = 1,24
i = INDEX (legalc(l:nlegal(j)) / patrn(j:j))
If (i .eq. 1) Then

Replace * with ?
patrn(j:j) = '?'

Else If (i .eq. 0) Then
Illegal character in pattern
Write (TTOUT, 508) patrn (j : j) , reply (1:nchars)
Format (/' Illegal character, ', A, ', in ', A,

', re-enter.')
Goto 1000

End If
Continue

End If

Page A-11

Fortran Source Module

C
Write (TTOUT,511) patrn(1:3), patrn (4:6), patrn(7:15),

1 patrn(16:18), patrn(19:24)
511 Format (/' Search pattern: [', A, ',', A, ']', A, '.' , A, ';',

1 A/)
ierr = ISSUC

C
9000 MAKPAT = ierr

Return
C
C. . . Pattern not of the form [grp,mem]name.typ;version
9900 Write (TTOUT,512) reply(1:nchars)
512 Format (/' ', A, ' not of the form [grp, mem] name, typ; versi on, '

1 ' re-enter.')
Goto 1000

C
End
Logical Function MATCH (jhdrno, hdrbuf)

C
C MATCH - Matches file headers selected for recovery.
C
C jhdrno - Index file header number.
C hdrbuf - Current file header (256 words) .
C
C Format of 24 character match pattern ("?"=wild card) :
c - -
C . .- "gggmmmffffffffftttwww"
C
C g (1- 3) = Owner's group number
C m (4- 6) = Owner's member number
C f (7-15) = File name
C t (16-18) = File type
C v (19-24) = Version number
C
C All octal numbers not wild carded must have leading zeros.
C

Implicit Integer (A-Z)
C

Include 'HdrDef/NoList' ! Define file header block offsets
Include ' UndCom/NoList'

C
Integer*4 jhdrno, jused
Integer*2 hdrbuf(256), iused(2), iuic, group, member
Character name*24, digits*8, crdate*12
Logical*! Iuic(2), Igroup, Imembr

C
Equivalence (jused, iused)
Equivalence (iuic, Iuic)
Equivalence (group, Igroup)
Equivalence (member, Imembr)

C
Data digits/'01234567'/

C
MATCH = .FALSE.

C

Page A-12

Fortran Source Module

C. . . Convert UIC to group and member numbers
C
1100 iuic = hdrbuf (HPROG)

C
group = 0
Igroup = Iuic(2)
Do 1110 j = 3,1,-!

i = MOD (group, 8) + 1
name(j:j) = digits (i:i)

1110 group = group / 8
C
C. . . Attempt pattern match to group number
C

Do 1120 j = 1,3
If (patrn(j:j) .ne. '?') Then

If (patrn(j:j) .ne. name(j:j)) Then
Goto 8100

End If
End If

1120 Continue
C

member = 0
Imembr = luic(l)
Do 1130 j = 6,4,-1

i = MOD(member,8) + 1
name (}? j) * = digits (i: i)

1130 member = member / 8
C
C. . . Attempt pattern match to member number
C

Do 1140 j = 4,6
If (patrn(j:j) .ne. '?') Then

If (patrn(j:j) .ne. name(j:j)) Then
Goto 8100

End If
End If

1140 Continue
C
C. . . Convert file name from RAD50 to ASCII
C

Call R50ASC (9,hdrbuf (IFNAM) ,name(7:15))
C
C. . . Attempt pattern match to file name
C

Do 1150 j =7,15
If (patrn(jij) .ne. '?') Then

If (patrn(j:j) .ne. name(j:j)) Then
Goto 8100

End If
End If

1150 Continue
C
C. . . Convert file type from RAD50 to ASCII
C

Call R50ASC (3,hdrbuf (IFTYP) ,name (16:18))

Page A-13

Fortran Source Module

C
C. . . Attempt pattern match to file type
C

Do 1160 j = 16,18
If (patrn(j:j) .ne. '?') Then

If (patrn(j:j) .ne. name(j:j)) Then
Goto 8100

End If
End If

1160 Continue
C
C... Convert version number to octal characters
C

verno = hdrbuf (I EVER)
Do 1170 j = 24,19,-!

i = MOD(verno,8) + 1
name(j:j) = digits (i:i)

1170 verno = verno / 8
C
C. . . Attempt pattern match to version number
C

Do 1180 j = 19,24
If (patrn(j:j) .ne. '?') Then

If (patrn(j:j) .ne. name(j:j)) Then
Goto 8100

End If
End: If

1180 Continue
C
C. . . Successful pattern match, type PIP-style directory info for user
C

iused(2) = hdrbuf(FEFBK)
iused(l) = hdrbuf (FEFBK+1)
Write (crdate,101) (hdrbuf (j), j = ICRDT, ICRDT+5)

101 Format (6A2)
Write (TTOUT, 501) jhdrno, hdrbuf (HFSEQ) , name (1:3), name (4:6),

1 name(7:15) , name(16:18) , name(19:24) , jused,
2 crdate(2:3), crdate(4:6), crdate(7:8),
3 crdate(9:10), crdate(11:12)

501 Format (' (',06, ',', 06, '): [', A, ', ', A, '] ', A, ' . ', A,
1 ';', A, 2X, 18, '.', 2X, A, ' -' , A, ' -' , A, IX, A, ' : ' , A)

C
C. . . NOTE: You may want to insert a query capability here as an
C. . . option.
C

MATCH = .TRUE.
C
8100 Return

End
Logical Function HDRFRE (jhdrno)

C
C HDRFRE - Returns availability status of header number jhdrno
C (Integer*4) from the index file bit map.
C
C To optimize program performance, a write-through cache is maintained

Page A-14

Fortran Source Module

C by retaining the validity of the VBN of the last bit map block read
C throughout the program. No read is performed if the VBN needed is
C the same as the last one read. (It's contents may have changed due
C to setting "in-use" flags, but the memory copy is always the same as
C the disk block, since a write is performed whenever an "in-use" flag
C is set.)
C

Implicit Integer (A-Z)
C

Include 'IdxDef/NoList 1 ! Define index file offsets
Include ' UndCom/NoList'

C
Integer*4 jhdrno, jbitno, newblk
Integer*2 masks(16), ibitno

C
Data masks/ 1 0001'X,'0002'X,'0004'X,'0008'X,

1 '0010'X,'0020'X,'0040'X,'0080'X,
2 '0100'X,'0200'X,'0400'X,'0800'X,
3 '1000'X,'2000'X,'4000'X,'8000'X/

C
C. . . Header number 1 is bit 0 in the bit map

jbitno = jhdrno - 1
C. . . 4096 bits to a disk block starting at MAPVBN

newblk = MAPVBN + (jbitno/4096)
C. . . If memory cache is not the correct bit map block, read new block

If (newblk .ne. jmapno) Then
If {GETBLK(IDXLUN,newblk,mapbuf, ierr) .ne. ISSUC) Then

Write (TTOUT,501) jhdrno, jhdrno, ierr, ierr
501 Format (' Error reading index file bit map for header 1 ,

1 ' number ', 06, ' (', 15, '.): ', 06, ' (', 16,
2 '.);.'/
3 ' recovery not attempted.')

C... If an error occurs, invalidate bit map block number
jmapno = -1

Else
jmapno = newblk

End If
End If
If (newblk .eq. jmapno) Then

C. . . Calculate word in mapbuf and bit in word
ibitno = MOD (jbitno,4096)
wordno = (ibitno/16) + 1
ibitno = (MOD(ibitno,16)) + 1
mask = masks (ibitno)
HDRFRE = I AND (mapbuf (wordno) , mask) .eq. 0

Else
HDRFRE = .FALSE.

End If
C

Return
End
Integer Function GETBLK (lun, iblk, ibuf, ierr)

C
C GETBLK - Reads a virtual block from the file open on lun.
C PUTBLK - Writes a virtual block to the file open on lun.

Page A-15

Fortran Source Module

C PUTCBK - Computes the checksum of words 1 through 255 into word 256,
C then writes a virtual block to the file open on lun.
C
C lun - Fortran Logical Unit Number
C iblk - Integer*4 Virtual Block Number (from 1)
C ibuf - Block buffer (256 words)
C ierr - RSX I/O status (also returned as the function value)
C

Implicit Integer (A-Z)
C

Integer IORVB, IOWVB, ISSUC
Parameter (IORVB = f 010400'0)
Parameter (IOWVB = '011000 ! 0)
Parameter (ISSUC = 1)

C
Integer*2 ibuf (256), iblk (2), ioparm(6) / cksum
Logical*! liosb(4)

C
iocode = IORVB
Goto 2000

C
Entry PUTCBK (lun, iblk, ibuf, ierr)

C
C... Calculate checksum, then fall through into PUTBLK

cksum = 0
Do 1000 j - -1,255

1000 cksum = cksum + ibuf(j)
ibuf (256) = cksum

C
Entry PUTBLK (lun, iblk, ibuf, ierr)

C
iocode = IOWVB

C
2000 Call GETADR (ioparm(1),ibuf)

ioparm(2) = 512
ioparm (4) = iblk (2)
ioparm (5) = iblk(l)
Call WTQIO (iocode, lun, lun,, liosb, ioparm, ierr)
If (ierr .eq. ISSUC) ierr = liosb(l)

C
9000 PUTBLK = ierr

C
Return
End
Subroutine UPCASE (n, s)

C
C... Convert string s to upper case characters
C

Integer n, ic
Character s*255, ALPHA*26
Data ALPHA/' ABCDEFGHIJKLMNOPQRSTUVWXYZ' /

C
Do 1000 j = l,n

C. . . Convert the next character to its integer equivalent
ic = ICHAR(s(j: j))

Page A-16

Fortran Source Module

C... Compare it to the integer equivalents for lower case a and z
If ((ic .ge. ICHARCa 1)) .and. (ic .le. ICHAR('z'))) Then

C. .. If it's lower case, replace it with the corresponding single
C... character substring from the upper case alphabet in ALPHA

i = ic - ICHAR('a') + 1
s(j:j) = ALPHA(iri)

End If
1000 Continue

C
Return
End

Page A-17

APPENDIX B

Include Files

B.I Index File Offset Definitions (IdxDef.ftn)

C IdxDef.ftn - Index file offset definitions
C

Character INDEXF *17
Parameter (INDEXF = '[0,0]INDEXF.SYS;1')
Integer*4 HOMVBN, MAPVBN
Parameter (HOMVBN =2) ! Home block
Parameter--" {MAPVBN = 3) ! Index file bit map

C

! Index file name

B.2 Home Block Offset Definitions (HomDef.ftn)

C HomDef.ftn - Home block offset definitions
C

Integer HIBSZ, HFMAX
Parameter (HIBSZ = 1) ! Index bitmap size
Parameter (HFMAX = 4) ! Maximum files allowed

C

B.3 File Header Block Offset Definitions (HdrDef.ftn)

C HdrDef.ftn - File header block offset definitions
C

Integer HIDOF, HFNUM, HFSEQ, HPROG, HUCHA, HCKSM
FHIBK, FEFBK
IFNAM, IFTYP,

Integer
Integer
Integer
Integer

IFVER, IRVDT, ICRDT
MESQN, MEFNU, MEFSQ
SCMDL

Parameter (HIDOF = 1)

Parameter (HFNUM = 2)
Parameter (HFSEQ = 3)
Parameter (HPROG = 5)

Identification area offset/
Map area offset
File number
File sequence number
Member number/

Page B-l

Include Files

Parameter (HUCHA = 7)

Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter

Parameter
Parameter
Parameter

(SCMDL
(FHIBK
(FEFBK
<IFNAM
(IFTYP
(IFVER
(IRVDT
(ICRDT
(MESQN

(MEFNU
(MEFSQ
(HCKSM

'lOOOOO'O)
10)
12)
24)
27)
28)
30)
36)
46)

47)
48)

256)

Group number
User-controlled characteristics/
System-controlled characteristics
! File is "marked-for-delete"
Highest VBN allocated
End-of-file block number
File name
File type
File version number
Revision date
/Creation date
Extension segment number/
Extension relative volume number
Extension file number
Extension file sequence number
Checksum of words 1 through 255

B.4 Miscellaneous Definitions and Fortran Commons (UndCom.ftn)

C
C
C

C

C

C
C

UndCom.ftn - Undelete miscellaneous definitions and common areas

Integer ISSUC, IERAD, IEEOF
Parameter; (ISSUC = 1)
Parameter (IEBAD = -1)
Parameter (IEEOF = -10)

Integer IDXLUN, TTIN, TTOUT
Parameter (IDXLUN = 1)
Parameter (TTIN = 5)
Parameter (TTOUT = 5)

Character PATRNO * 24
Parameter (PATRNO = '????????????????????????')

Integer*4 jcount, jmapno
Integer*2 mapbuf(256), wordno, mask
Logical enable
Character patrn*24

Common /UNDCOM/ enable, jcount, jmapno t mapbuf, wordno, mask
Common /UNDCON/ patrn

Initialize the index file bitmap block context for HDRFRE
Data jmapno/-I/

Page B-2

APPENDIX C

Command File

C.I Command File (Undelete.cmd)

.Enable Substitution
/
; Undelete.cmd -- Compile and task build file, un-deleter

'.SetS mcr ".;"
.SetS del ".;"
.If <CLI> eq "MCR" .SetS mcr ""
.If <CLI> eq "D£L". .SetS del ""

'mcr'Pip Undelete. obj; */de/nm/ .1st; *
1 del'Delete Undelete.obj;*,.1st;*

1 mcr'F77 Undelete t Undelete/-sp=Undelete'PI'
'dcl'Fortran/F77'Pl' Undelete /List
/
.; 'mcr"Pip Undelete.tsk; */de/nm, .map;*
.;'del'Delete Undelete.tsk;*,.map;*
'mcr 1 .SetS t*k "Tkb"
'del'.SetS t*k "Link"
'mcr'.Iflns . . .Ftb .SetS tl<±> "Ftb"
'del'.I fins ...Ftb .SetS tl<±> "Link/Fast"
'mcr' .SetS fp "/fp"
'del'.SetS fp "/Code:FPP"
.SetS f4peis ""
.TestFile LB:[1,1JF4PEIS.obj
'mcr'.If <FILERR> eq 1 .SetS fp "/-fp"
'del'.If <FILERR> eq 1 .SetS fp "/Code:NoFPP"
.If <FILERR> eq 1 .SetS f4peis ",LB:[1,1]F4PEIS"
1 mcr''tkb' Undelete' fp',Undelete/-sp=Undelete'f4peis'
'del''tkb''fp' Undelete'f4peis' /Map:Undelete
 /
.; Documentation needs DSR with right offset 5 characters for printing
.; on an Imagen laser printer in portrait orientation.

.; ' mcr' . I fins . . . DSR Pip Undelete. doc; */de/nm/ UndPLM. doc; *

.;'del'.I fins ...DSR Delete Undelete.doc;* . UndPLM.doc;*

.;'mcr'.IfIns ...DSR DSR Undelete=Undelete/right:5

.;'del'.I fins ...DSR MCR DSR Undelete=Undelete/right:5

Page C-l

Command File

'mcr 1 .Iflns . . .DSR DSR UndPLM =UndPLM /right:5
'del 1 .Iflns . . .DSR MCR DSR UndPLM =UndPLM /right:5

Page C-2

